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Abstract—An analysis of the photophoretic force and velocity on aerosol particles in both the free molecular
and slip-flow regimes is presented. Under the assumption of unpolarized incident radiation, absorption of
radiation with the particle is formulated from Lorenz/Mie theory. For both the free molecular and slip-
flow regimes, the functional dependence of the photophoretic velocity upon the radiative size parameter
and complex index of refraction is given by the photophoretic asymmetry factor J,. An exact infinite-series
expression for J, is derived which allows for rapid calculation of photophoretic behavior. Numerical results
indicate that photophoresis can be a significant transport mechanism for micrometer-sized particulates in
high radiative transfer combustion environments.

1. INTRODUCTION

THE IDENTIFICATION and analysis of small-particle
transport mechanisms in combustion environments
is an essential element to the accurate prediction of
particulate deposition rates. Thermophoresis and
inertial impaction are known to be important mech-
anisms and have been investigated extensively [1].
Less well known is the role of photophoretic par-
ticulate transport. Photophoresis is similar to ther-
mophoresis in that particle motion is driven by a
temperature gradient. In thermophoresis, the tem-
perature gradient exists in the surrounding gas,
whereas in photophoresis, the temperature gradient is
on the particle surface and arises from the non-uni-
form absorption of radiant energy within the particle.
Considering that radiative transfer can account for
around 95% of the total heat flux in pulverized-coal
(PC) furnaces [2], the ‘driving force’ for photo-
phoresis in combustion environments can be sig-
nificantly greater than that for thermophoresis.
Because of this, an analysis of photophoresis in ther-
mal radiation situations is certainly warranted.

Several theoretical investigations have attempted to
quantify the photophoretic force F, and velocity ¥,
of a particle. For particles in the free molecular limit
(FML) regime, i.e. Kn=1I/a>» 1, where Kn is the
Knudsen number, / the mean-free-path of the gas
molecules and a the particle radius, solutions have
been presented by Hidy and Brock [3), Tong [4],
Ahktaruzzaman and Lin [5], and Sitarski and Kerker
[6]. Reed [7] considered photophoresis in the slip-flow
(Kn < 1) regime, and Yalamov et al. [8] examined the
continuum (Kn « 0) situation.

An important difference among the above works
is the manner in which absorption of radiation was
formulated in the conduction equation for the particle
temperature distribution. In refs. [3, 4, 7], it was
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assumed that the radiation incident upon the particle
was absorbed entirely on the particle surface. Radi-
ative energy transport to the particle was thus for-
mulated as a boundary condition in the conduction
equation. Such an approach is not physically realistic
for micrometer-sized aerosol particles exposed to ther-
mal radiation. For such situations, where the particle
radii is comparable to the radiation wavelength A,
radiation absorption will be distributed throughout
the particulate volume. Indeed, under certain con-
ditions the radiant energy can be ‘focused’ into the
back (non-illuminated) side of the particle, resulting
in a higher temperature at this surface than the illumi-
nated side and a corresponding particle motion
towards the radiation source (negative photo-
phoresis). Consequently, to accurately predict F, and
V, it is necessary to formulate radiant energy trans-
port to the particle through a source function in the
conduction equation.

In general, the distribution of radiant absorption
within a homogeneous sphere can be obtained from
Lorenz/Mie theory as a function of the radiative size
parameter x = 2na/A and the complex refractive index
m = n+ik [9]. This theory was adopted in the ana-
lytical, closed-form solutions for F, given in refs. [5,
8]. Numerical evaluation of the solutions is not a
trivial task, due to the complexities of Lorenz/Mie
theory. At present, calculations of F, for general x
and m are limited to those presented by Pluchino [10]
for the continuum theory of ref. [8], and Kerker and
Cooke [11] for the FML theory of ref. [5]. The FML
analysis of Sitarski and Kerker [6] also incorporated
the Lorenz/Mie source function, but involved a
numerical, Monte-Carlo technique in the solution of
the energy and momentum equations.

The results of ref. [10] were found to agree well
with measurements of F, performed by Arnold and
Lewittes [12]. Accurate experimental validations of
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distribution function
momentum exchange, thermal slip,
and temperature jump coefficients

Crms Css Ct

¢.,d, internal electric field coeflicients

c, specific heat of fluid

E electric field amplitude vector

F force

g dimensionliess heat source distribution
function

Gn function of { defined by equation (7)

G, function of { defined by equation (10)

H, defined by equation (35)

1 radiant intensity

A photophoretic asymmetry factor

k thermal conductivity

Kn Knudsen number, //a

I gas molecule mean-free-path

Le Lewis number

m refractive index, n+ik

n real part of refractive index

P gas pressure

P, Legendre polynomial

dr radiative heat flux

() heat generation through radiation
absorption

Q.s  absorption efficiency of particle

r radial position

R specific gas constant

R,, S, functions of m, x given in equations (59)

and (61)

NOMENCLATURE
a sphere radius T temperature
A, Ay, As  coefficients in Millikan drag v fluid velocity vector
formula, equation (31) |4 particle velocity
B dimensionless radiative intensity X radiative size parameter.

Greek symbols
o thermal accommodation coefficient
a,D  photophoretic diffusivity
4 dimensionless radial position
n dynamic viscosity
K imaginary part of refractive index
A wavelength
U cos @
m,, T, angular scattering functions
P density or dimensionless radiative radial
coordinate
T thermal response time
¢,0  azimuth and polar coordinates
/8 Ricatti—Bessel function.
Subscripts
g gas phase
p photophoretic
r,0,¢ spherical coordinate system component
s solid phase
T thermophoretic
0 ambient
A spectral component.
Superscripts
* complex conjugate

normalized or wavelength averaged.

the FML predictions for F, have currently not been
performed.

The numerical complexity involved in evaluation of
F, and V,, from the above Lorenz/Mie-based theories
limit their applicability to a wide range of problems.
For instance, calculation of V, for a broad-band
source of radiation, e.g. thermal radiation, would
add another obstacle to an already difficult task.
Developed here are theories for photophoresis in both
the free molecule and slip-flow region which incor-
porate the Lorenz/Mie source yet allow for a relatively
simple calculation, in that determination of V,
involves a computation equivalent to determination
of the radiative cross sections of the particle. A central
assumption in the theory is that the incident radiation
is unpolarized, which results in a heat generation func-
tion that is independent of azimuth angle. Such would
be the case for thermal radiation. This assumption
was adopted by Yalamov et a/. [8] ; indeed, the theory
presented here represents a velocity-slip corrected

solution to the continuum theory of ref. [8]. The free
molecule theory of Ahktaruzzaman and Lin [5] con-
siders the full three-dimensional problem, yet the
theory presented here is shown to qualitatively agree
with this work.

The analysis begins with the general solution to the
conduction equation for a sphere, which is central to
both the slip-flow and free molecule regimes. Theories
are then developed for these two regimes. A closed-
form solution for the radiative parameter governing
F, and V, as a function of x and m is presented,
and comparisons are made with previous theories and
experiments. Finally, the role of photophoresis in
combustion environments is discussed.

2. SOLUTION OF THE CONDUCTION
EQUATION

Solutions to the spherical geometry conduction
equation for non-uniform heat generation have been
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presented for both three- [5] and two-dimensional {8]
cases. In general, the rotation of the particle with
respect to the incident radiation field will result in a
time-dependent problem. The thermal response time
of the particle 7, = a?/4a,, where o, is particle thermal
diffusivity, will generally be much smaller than the
time associated with diffusional particle rotation [13].
Particle rotation will also result from rotation of the
surrounding fluid, which, in the turbulent flows
associated with large-scale PC combustors, can be
significant. However, as is the case with thermo-
phoresis, the effect of photophoresis upon parti-
culate deposition will be of greatest significance in
the transport of particulates across the viscous
sublayer [1, 14]. In this region 7, will typically be much
smaller than the fluid rotation time. Consequently, a
quasi-steady analysis can be used in which the coor-
dinate system of the particle is fixed relative to the
incident radiation direction.

It is also assumed that the particle is nonvolatile.
Vaporization of volatile components from the particle
surface will, generally, influence the overall photo-
phoretic force, and such considerations have been
investigated in refs. {6, 8]. It has been noted, however,
that the ‘jetting’ action of a devolatilizing coal particle
can result in rotation rates of the order of 1000 s~*,
which would bring into question a quasi-steady analy-
sis of the conduction equation {15]. Particles in the
boundary layer, which again are of prime interest in
consideration of deposition rates, can be reasonably
expected to be completely devolatilized.

For the problem at hand, the radiation is assumed
to propagate in the positive z-direction. In spherical
coordinates and for azimuthal symmetry, con-
servation of energy is expressed as

10 oT, 1 0 0T,
2 _— 2778 o g2y s
Vn‘ﬁm(’ 6r>+r26u[(1 “)6;4]

o, W
=~ Tw 0y)

where T is the particle temperature, y = cos 8, k, the
thermal conductivity, and Q(r,u) the volumetric
energy generation rate resulting from local radiation
absorption. An implicit assumption in equation (1)
is that the radiative energy transfer due to thermal
emission within the particle is insignificant compared
to conduction heat transfer. Although thermal emis-
sion may become important at combustion tem-
peratures, full coupling of radiative transfer and con-
duction equations is beyond the scope of the present
analysis.

The radiant-absorption heat generation function Q
can be related to the electric field E with the particle
[9]. For monochromatic incident radiation, Q is given
by

(o) = dnnl, \E(r,p)|*  4nnc,
QW =—7"""g,pr =~ 3

B(r,) (@)

where n and «x are the real and imaginary parts of
the refractive index m, I, the intensity of the inci-
dent radiation, E, the incident electric field strength,
and B(r, u) the dimensionless electric field distribu-
tion function. Defining non-dimensional quantities
T=(T,—Ty)/To, [ =r/a, and g = a’Q/k,T,, where
T, is the mean temperature of the surrounding fluid,
equation (1) becomes

0 zaT d , oT _ )
&(C a—c)+a[(1—# )a_'ujl— —%9Cw. ()

The solution to equation (3) is given as the sum of
the homogeneous and particular solutions, denoted
by T, and T, respectively. The homogeneous solution
that is valid at the origin is

Ti= T AP @

where A, are undetermined coefficients and P,(u) the
Legendre polynomial. The particular solution can be
obtained from a transformation of equation (3) into
an ordinary differential equation. Multiplying equa-
tion (3) through by (n+1/2)"?P,(u) du, integrating
from —1 to 1, and utilizing Legendre’s equation yields

d d
d—{<cz d“r) —nt D= g, )
where
2 1 172 M1
u..(o=<"2+ ) J_]Tz(C,u)P,.(u)du ©®
and
2n+1\"? !
9O =\— ¢ 9GP du. (D)

The solution to equation (5) is obtained from vari-
ation of parameters, to yield

C~(n+ 1) (%
Al L £'g.() dt

un(§) =

cn
+ 2n+1

1
ﬁ =+ Dg (Hdt. (8)
Thus, the solution to equation (3) is

T= 3 (4L+GO)P. 0 ©)

n=0

where

G, = %(iﬁ t“"'[_ly(t,u)Pn(u) dpde

4 1
+C“"+”j t"”} lg(t,u)P,.(u) dudt)- (10)

0 —
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3. SLIP-FLOW REGIME PHOTOPHORESIS

For particles in the size range Kn = //a < 1, where
Kn is the Knudsen number and / the mean-free-path
of the gas molecules, the analysis of photophoresis
can be approached from a continuum viewpoint with
the addition of slip-corrected boundary conditions.
This approach was adopted in the slip-flow regime
photophoresis analysis of Reed [7], although the exact
nature of radiant absorption within the particle was
not considered. It would not be expected that the
functional dependence of F, upon Kn would be affec-
ted by the particular model taken for radiant absorp-
tion; indeed, Arnold et al. [16] have indicated that
the slip-correction factor for the continuum-theory
expression of Yalamov et al. [8] is precisely that
obtained in ref. [7]. For the sake of completeness,
however, the slip-flow regime analysis for F, and V,
is presented below.

Assuming Re « 1, where Re is the Reynolds num-
ber of the sphere, the governing differential equations
for the problem are

op _ PaSp (20 0T, 0T,
ViTe=7 (r 0 TV an
ver, = — 208 (12)
ks
1
=-VP (13)
n
Vev=0 (14)
The boundary conditions for the above are
oT,
Tg—Ts=c117rg-, r=a (15)
oT, oT,
kg#= s =4 (16)
T,=T,, r->ow amn
v, r= (18)
/ Uy 1 ov, o oT, _
Yo = Cm r r60 pgToa 80" r=a
(19)
v="V, r-o . (20)

In the above, T, 5, p, and c, are the temperature,
viscosity, density, and specific heat of the gas. Equa-
tion (15) is the temperature-jump condition, in which
the coefficient ¢, is of the order of unity. Omitted
in equation (16) is radiative heat transfer from the
particle, which is here assumed negligible. Equation
(19) gives the tangential velocity slip at the particle
surface, where ¢, and ¢, are the momentum exchange
and thermal slip coefficients. It is precisely the tan-
gential velocity slip which results in the photophoretic
force for this size regime. Values of the coefficients c,,
¢, and ¢, are obtained from kinetic theory as 2.18,
1.14, and 1.17, respectively [17].

An exact solution to the system of equations (11)~
(20) has not been developed. Brock [18] utilized a
perturbation technique to develop an approximate
solution for the slip-flow thermophoresis problem, in
that T,, T, v, and v, were expanded in terms of
the dlmensmnal parameter f = c1/p,T,. On the first-
order approximation his analysis is equivalent to
neglecting the convection term (right-hand side) in
equation (11). The contribution to the thermophoretic
force by higher-order approximations was found to
be negligible.

The same approach is utilized here. With the con-
vection term removed from equation (11), the general
solution is

T,—

= 3, DL P ().

n=0

T, @1

Utilizing equations (9), (15), and (16), the coefficients
D, are solved as

G =nG,0)
" n+(n+ Dkgfk,+n(n+ Deldla

22)

where the prime denotes differentiation with respect to
the argument. The general solutions to hydrodynamic
equations (13) and (14) are [8]

= 3 14 OPG) @)
S FulOPP G en)
P= 3 fu®P® e3)

where f,,, fe., and f,, are undetermined functions of
{ alone and P{P(u) is the associated Legendre
function. When the corresponding stress tensor
obtained from equations (23)—(25) is integrated over
the sphere surface, all terms except # = 1 vanish due
to the orthogonality of the Legendre functions.
Consequently, the problem effectively reduces to the
case of Stokes flow past a sphere. For this situation
[19]

V, (1 2y +2 >cos@
l)r=: _—— —_—
0 C C}

= —Vo(l —C—C‘—Z—i;)sina

where ¢, and ¢, are undetermined coefficients. Using
boundary conditions (18)—(20), one obtains
o= 3 (142¢y,l/a)

"7 4 (14 3¢,l/a)

1 enlG1(1) =G, (1)]
2 Vopea(l+3calja)(1 + 2cdja+ 2k, Jks)

(26)

27

(28)

The force acting upon the particle can now be
obtained from the relation F = 8nanVyc, [19]. The
first term in equation (28) will yield the Basset slip-
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flow correction to Stokes drag, and the second term
represents the photophoretic force contribution.
Using equations (10) and (2) in the term G'(1)—
G (1), this force is

dmen’lal,
Fp T pgks TO
X [(1+3enlla)(1+2¢d/a+ 2k, [k))™" (29)
where

1 ]
J (x,m) = 3mch J B(t, w)*udude.  (30)
0o J-1

As mentioned previously, Reed [7] considered the
case where radiation is absorbed entirely on the illumi-
nated particle surface. Such a condition would cor-
respond, in the analysis developed here, to a source
function Q proportional to 5({—1)u on the illumi-
nated side and equal to zero on the dark side, where
4 is the delta function. For this situation it can be
readily shown that J, = —0.5Q,,, where Q,,, is the
absorption efficiency of the particle, and equation (29)
will become equal to the expression for F, developed
by Reed [7]. For the case where //a and k,/k, both
equal zero, equation (29) also corresponds exactly to
the non-volatile particle solution given by Yalamov
et al. [8]. Evaluation of the photophoretic asymmetry
factor J, is discussed in Section 5.

The photophoretic velocity ¥V, is obtained by equa-
tion F, to the local aerodynamic drag on the particle.
The Millikan drag formula is more accurate than the
Basset formula for near-unity Knudsen numbers, and
is expressed as

_ 6rnnV,a
" 1+1a(C 4+ C,e ")
where C, = 1.20, C, = 0.41, and C, = 0.88 [17]. The

expression for ¥, in the slip-flow regime is thus given
by

Fy @3y

Vo= 2e.nl,J, 1+1ja(C,+C, e—c3a/z)
P 3pgk,To (1+3cnl/a)(1+2¢Jja+2k, [k,)
(32

The sign convention on ¥, is selected so that dis-
placement in the direction of radiation propagation is
considered positive.

4. FREE MOLECULAR REGIME
PHOTOPHORESIS

For the situation where the particle radius is much
smaller than the mean-free-path of the surrounding
gas molecules, the photophoretic force on the particle
can be obtained from consideration of the molecular
momentum transfer to and from the particle surface.
The analysis presented here closely follows that
developed by Talbot et al. [17] for free molecular
limit thermophoresis. In the following, the definition
adopted for [ is

I = 2(n/8RT;)"*/p,

where R is the gas constant of the surrounding fluid,
and the thermal conductivity of the gas is taken to be
the translational component given by

15

The incoming molecules are assumed to be dis-
tributed in velocity according to a Maxwellian dis-
tribution function evaluated at the ambient gas tem-
perature T, All molecules are assumed to be reflected
diffusely, which implies complete momentum accom-
modation. Complete thermal accommodation is not
assumed, and the thermal accommodation coefficient
o is defined as the ratio of the net molecular kinetic
energy transfer to the particle to that if all reflected
molecules were characterized by a Maxwellian dis-
tribution evaluated at the actual local surface tem-
perature.

In general, the boundary condition for the energy
equation and the momentum equation will have a
non-linear 7, dependence [4, 6]. Assuming that
T,/Ty =~ 1, which will generally be true for micro-
meter-sized particles in atmospheric-pressure com-
bustors, the distribution function for the reflected
molecules can be expanded in a Taylor series about
the ambient temperature 7,. By performing this
expansion, and taking into account conservation of
mass at the particle surface, the T, dependence in the
analysis can be linearized. Under this approximation,
the net energy transfer from the surface can be written
as [17]

T,—T
= 0p (2RT,) V2 0,

2/=T,

In non-dimensional form, equation (33) is expressed
as

oT,
kG

r=a. (33)

8T _
~ s =Hnl [=1 (34)
where
da k, a
"k T (35)

Using equation (34) as a boundary condition in the
expression for T, equation (9), the coefficients A, are
obtained as

_G.()+H,G,(1)
A4, = niH, . (36)

The surface temperature distribution is thus given by

P,()
n+H,’

T(, W) = ¥ [G.(1)—nG,(1)] (37N
n=0
In the linearized approximation, the net force from
molecular momentum transfer acting upon a differ-
ential area element of the sphere is [17]
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dF, ap,RT,
A= 4 T(1, ) cos 6.

(38)

As was the case for the slip-flow problem, only the
n =1 term in equation (37) remains following inte-
gration of equation (38) over the particle surface.
Consequently, the photophoretic force in the free
molecular regime is given as

n’an’Lal, (afl)?
L 6pk. T, 1+H,

(39

For radiation absorbed entirely on the particle surface
(i.e. J; = —0.50,,), the above expression for F, will
reduce exactly to that developed by Hidy and Brock
B3l

Equating F,, to the expression for the particle drag,
equation (31), the photophoretic velocity is

V. = 71'“’11/10-]1 (a/l) [1+l/a(C +C2e_C3“/l)]
- 36pgk T, 1+H,

40)

In the free molecular limit, where Kn > 1, equation
(40) reduces to

0.14anl,al,

Vo(a/l—0) = pekiTol

(41)

5. EVALUATION OF THE PHOTOPHORETIC
ASYMMETRY FACTOR J,

Both the slip-flow (equation (32)) and the FML
(equation (41)) expressions for ¥V, have the same
dependency upon radiative absorption, which is
embodied in the photophoretic asymmetry factor J,
as given in equation (30). This parameter, which rep-
resents a weighted integration of the source function
over the particle volume, was first identified by Yala-
mov et al. [8].

The internal heat generation is related to the inter-
nal electric field by equation (2). Using the formalism
of Bohren and Huffman [20], the spherical com-
ponents of the internal electric field for a plane inci-
dent wave of unit amplitude are given as

E = cosn//

Z "' 2n+1)d,y,(mp) PL" (1)
(42)

E, = °°s"’ T Bl (o), (1) )5, 1)
43)
sinyy &

mp Z "E,(c,¥»(mp)t, (1)

n=1

E, = —

—id Y, (mp)m,(1)). (44)

In the above, p = 2nr/J is the dimensionless radiative
radial coordinate

E, = Qn+1)/n(n+1)

¥, the Ricatti-Bessel function of order n and the prime

denotes differentiation with respect to the argument.
The functions =, and 7, are given by

_ PP
"~ sinf @5
d 1
T, Eép P (46)
The coefficients ¢, and d, are
o= WG e
" Yn(mx) & (x) — my (mx) &, (x)
d = my, ()5 (x) —my(x)¢,(x) “8)

m, (mx)&; (x) — Y, (mx) &, (x)

where &, =, +1y, is the Ricatti-Bessel function of
the third kind. For unpolarized incident radiation, the
field components are obtained by setting = n/4 [21].
It should also be noted that the refractive index is
defined here as m = n+ik.

Pluchino [10] evaluated J, through numerical quad-
rature of equation (30) using the above expressions.
Considering that the number of significant terms in
equations (42)—(44) is generally larger than the size
parameter x, such computations can involve a con-
siderable amount of time for large x. It was observed
by Greene et al. [21] that the ability to determine
accurately J; is contingent upon evaluation of the
Ricatti-Bessel functions with a high degree of
precision. Approximate analytical solutions for J;
have been developed from geometrical optics [8] and
Rayleigh-limit [16] considerations. In the following, it
is demonstrated that equation (30) can be analytically
integrated to yield a closed-form solution for J, appli-
cable for arbitrary x and m.

Substitution of equations (42)-(44) into equation
(2) yields the following terms:

E E, ln+1+2 1 I+1
= g 5, 27D
x (2n+ 1)1+ )d,d*y Y PO PY  (49)
1
Ey'Ef+Ey Ef = 55— Z Z i"*(=1)'E,E,

2|m|*p* = [
X ((eac b * + ddXY o * Y (m,mi+7,7,)

+ile.dM ¥ —d. e Y +t,m)). (50)
It should be realized in the above that the argument
of ¥, is mp and that of 7, and =, is u. In integration
over u, the following integral relationships can be
derived [20]:
2n(n+1)*(n—1)?

1
L @udma)pdn =5 o)

ln—1I| =1, n=max(n,l)
=0, |n—I|#1 (51
! 2n(n+1)
J‘_l T+ m,r)pdu = m—é("—l) (52)
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! 2n(n+1)(n—1)
(1) p(1) SAETAART ) _Jl =
J‘_an PI “d“ (2n+1)(2n_1)’ |n Il 1’
n = max(n,l)
=0, |n—I]#1 (53)

Multiplying equations (49) and (50) by u#du and inte-
grating from —1 to 1 yields

i -2 ©
j E E*pdp=—7—Im Y n(n+1)(n+2)
1 |m|*p n=1

X i\ dt Y (54)

J (Eo'Ef + Ey* Ef)pudp =

-2 i 2
W m Zl (n(n+ )(Cn+16' ol VY o
2n+1
AV i) — T D d et wn) (59)

Utilizing the recurrence relationships for ,, the
above equations can be put in a form more amenable
for integration over p. The following relationships are
utilized :

1 2
Vs W m0) = U = b
1
i (56
U (mp)U2mp) = ”m—pwnw:w;w:. 5

When these expressions are substituted into equation
(55) and summed with equation (54), all 1/p* terms
cancel. As a result, one is left with

! ) © (n(n+2)
* = 2
J~ E-E #dﬂ Im |2 zImngl( mp ( n+lcn||//n|
n(n+2)
+dn+ ldn*w/n+l|2) - <Ln_,:1_ (C,,+]C:,'

2n+1

4_d d +l) + ( 4_1) n

d.c? ) v ) 58)
Equation (58) is now multiplied by p*dp and inte-
grated from 0 to x. The terms involving |y, (mp)|? and
|¥,4 1(mp)|? can be integrated directly to yield

Im [my,,, ,(mx)Y,} (mx)]
Im (m?) ’

R, = L [Wn(mp)|>dp =
(59)

The term involving v, (mp)y ¥ (mp) can be integrated
through use of the recurrence relations and con-
sideration of real and imaginary parts. Denoting

S, = L pY F(mp)y ., (mp) dp (60)

the following expression can be derived :
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FiG. 1. Photophoretic asymmetry factor J, vs size parameter
x. Results of ref. [10] and equation (62).

S, = x(mly,(mx)|* +m*y, ., (mx)|*)

—i
h 2Im(m2){
Rc(mz)

)R,,+(2n+ l)m*R,,_,,,}.

(61)
The expression for the photophoretic asymmetry
factor J, can now be written as

- i <n(n+2)(cn+lc R

n=1

(m+2(n+ 1

7 = —6nk
" mix?

n(n+2)

+d.y 1 dfR, 1) "'( ntl (Y

2n+1
(+l)dc"> ) (62)

Numerical evaluation of equation (62) is discussed in
the appendix.

Under certain situations, limiting behavior can be
identified for J,. For x » 1 and k >» 1, corresponding
to a large, highly absorbing sphere, all radiant energy
is absorbed at or near the particle surface. Conse-
quently, J, will approach the surface-absorption limit-
ing value of —0.5Q,,,. For the case where x >» 1 and
both (n—1) and kx « 1, J, can be obtained explicitly
from geometrical optics considerations, yielding [8}

_ 3(n—1) 2
J,-2mcx< T —gmcx>.

Evaluation of J, using equation (62) correctly obeyed
the above limiting behavior.

The calculations of J, performed by Pluchino [10]
appear to be the only published values to date, and
comparison is made between these values and those
obtained from equation (62) in Figs. 1 and 2. The
curves present J, as a function of x for m=
1.574+0.038i and 1.57+40.38i, respectively. The 400
points used to generate the curves corresponding to
equation (62), for size parameters from 0.05 to 20,
required about 2 min of calculation on a 80287-based
personal computer. The agreement is quite good,
although in Fig. 1, J, obtained from equation (62) is
slightly larger than the values of ref. [10] for x greater
than around 14. Without additional information it is

+ddt ) +

(63)
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impossible to verify completely the calculations of
equation (62). However, in view of the fact that the
large majority of terms in |E|% when integrated over
udy, are identically zero (i.e. equations (51)—(53)),
numerical integration of equation (30) will likely pro-
duce significant error unless a high order of quad-
rature is utilized.

6. PHOTOPHORETIC FORCE RESULTS

There is not an abundance of accurate experimental
measurements of the photophoretic force, although
the photophoretic spectroscopy technique (PPS)
recently developed by Arnold et al. [22] appears to be
capable of providing a large amount of information
on the photophoretic properties of aerosol particles.
Their technique basically involves the levitation of a
charged particle in a modified Millikan apparatus.
Incident illumination upon the particle is provided
with either a laser or a continuum source. By varying
the wavelength of the continuum source, or, for the
case of a volatile particle, allowing the particle to
evaporate, the photophoretic force acting upon the
particle can be obtained as a function of the particle
size parameter.

Using the PPS technique, Arnold and Lewittes [12]
obtained values of F,/mg, where mg is the particle
weight, for an evaporating glycerol particle. Measure-
ments were made at two wavelengths (10.63 and 9.58
um) at which the refractive indices of glycerol were
estimated to be that given in Figs. 1 and 2, respectively.
Figures 3 and 4 give the experimental F,/mg results
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F1G. 3. Photophoretic force-particle weight ratio F,/mg vs x.
Results of experiment [12], slip-flow and continuum theories.
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of ref. [8] and theoretical continuum- and slip-flow
predictions obtained from equations (29) and (62). In
Fig. 3, where the wavelength is 10.63 um, the refractive
index has been adjusted to 1.57+0.0475i so the cal-
culated and measured reversal points (the transition
from negative to positive photophoresis) coincide. In
Fig. 4, for 9.58 um, the refractive index is 1.57 +0.38i.
Note that the magnitude of the slip-flow results are
closer to the experimental values that the continuum-
flow results. In addition, the ratio between the cal-
culated and measured F,/mg values are more nearly
aconstant for the slip- than the continuum-flow analy-
sis. This indicates that the functional dependence of
F, on particle size and prevailing Knudsen number is
correctly predicted by equation (29). As noted by
Pluchino [10], the error between the calculated and
measured curves is to be expected considering the
difficulty in estimating the intensity of the incident
beam falling upon the particle.

The free molecular limit photophoretic force analy-
sis, given by equation (39), is now compared to the
theory of Ahktaruzzaman and Lin [5] as calculated
by Kerker and Cooke [11]. Presented in Fig. 5 are
results of F, calculated using the parameters given in
ref. [11], which correspond to a pressure of 0.1 atm,
k=50 W m™' K-, 1 =0.6 um, and an incident
intensity equal to the solar constant, 1353 W m~2,
When compared to the results of ref. [11], it is seen
that the functional dependence of F, is quite similar
between the two theories, although some of the oscil-
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analysis. Comparison of the present work with the results of
ref. [11].
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lations evident in the results of ref. [11] are damped
out in the present analysis. Of concern is that F, cal-
culated from equation (39) is almost exactly 2 x 10°
times greater than that presented in ref. [11]. The latter
results are suspect, in that the authors state that their
calculated F,, which from their figures is of the order
of 10~-?' N, will, for a particle having a density of 1000
kg m~? and a radius of around 0.35 um, correspond
to roughly 2-4% of the particle weight. Such a particle
would actually weigh 1.8 x 10~ N, so it is believed
that the authors made an error in presenting their
results. However, their conclusion regarding the pho-
tophoretic force relative to the particle weight is con-
sistent with the results of the present analysis.

A significantly larger photophoretic force was pre-
dicted from the Monte-Carlo numerical calculations
of Sitarski and Kerker [6]. For gas and particulate
properties similar to those presented in Fig. S, the
authors indicate that the photophoretic force on sub-
micrometer aerosol particles exposed to solar radi-
ation can exceed the particle weight. This result is at
odds with the present analysis. The value of J, yielding
a photophoretic force, for the above conditions, equal
to the particle weight would be well in excess of unity.
From physical considerations, the maximum value of
J, would occur if the radiant energy within the particle
was absorbed entirely within an infinitesimal volume
furthest from the source of radiation, i.e. at the point
r = aand = 0. Using a delta-function representation
of Q(r, u), it can be shown that this situation would
result in J, = 0.75Q,;,. As the absorption efficiency
Q.us is typically less than 2 or 3 [20], the results
obtained in ref. [6] appear to be physically unrealistic.
The confirmation (or rejection) of the theoretical pre-
dictions, however, will have to wait until accurate
experimental measurements of F, in the free mol-
ecular limit become available.

7. PHOTOPHORESIS {N COMBUSTION
ENVIRONMENTS

The analyses for the photophoretic velocity ¥,
given in Sections 3 and 4 considered the case of a
plane, monochromatic incident radiation beam. Such
conditions are obviously not realistic in combustion
environments. A complete analysis of the photo-
phoretic behavior of particles in, say, PC furnaces,
would have to account for the directional and spectral
distribution of the incident radiation as well as the
spectral dependence of the particle refractive index m.

In order to provide initial estimates of the import-
ance of photophoresis as a particulate transport mech-
anism, some assumptions are made concerning the
directional and spectral dependencies. First of all, it
is assumed that the spectral intensity I, appearing
in equations (32) and (40) can be replaced with the
radiative heat flux gg;. Secondly, the radiation source
can be characterized by an effective radiation tem-
perature Ty and wavelength-independent emittance &
such that
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FiG. 6. Spectral and total asymmetry factor. Char and fly
ash particles.

qra = eep(Tr) (64)

where e,;,(Tr) is the Planck blackbody function.
Thirdly, the refractive index of the particle is assumed
constant.

For the above conditions, a wavelength-integrated,
or total, photophoretic asymmetry factor J, can be
defined by

- 1 [*®
J, = mj; Ji(x, mep(Tr) dA.

(65
By defining a ‘thermal radiation size parameter’
% = 21aTg [(AT)max, Where (AT)pax = 2898 um K cor-
responds to the Wein displacement law, J, can be
expressed as a function of X and m.

Curves of spectral J,(x) and total J,(X) are pre-
sented in Fig. 6. The two values of refractive index
used in generating the curves were chosen to roughly
correspond to char particles (m = 2+ 1i) and fly ash
(m = 1.54+0.01i) [23]. As can be seen from Fig. 6, the
differences in m between char and fly ash can result
in significantly different photophoretic behavior. The
highly-absorbing char particles will experience a posi-
tive photophoresis (in the radiation direction) for all
x or %, whereas the relatively low-absorbing fly ash
undergoes negative photophoresis up to a value of X
of around 50. The total J, curves are seen to be shifted
somewhat to the right of the spectral J, curves, and
the oscillations evident in J, for fly ash at small x are
damped out in the corresponding J,. Comparison of
the spectral and integrated curves indicate that the
‘effective’ wavelength of blackbody radiation, for esti-
matjon of J, from J,(x), is around 4 = 0.8(AT),pax/Tx.

For particulate-deposition oriented research, it is
convenient to define a ‘photophoretic diffusivity’ anal-
ogous to the thermophoretic diffusivity oD, where
oty is the thermophoretic diffusivity factor and D the
particle Brownian diffusion coefficient [1], such that

qr
Vp=apDkT.
14

(66)

For atmospheric pressure furnaces, the mean-free-
path of the gas molecules and the effective wavelength
of radiation will be of the order of 0.1 and 1 um,
respectively. Considering that J, rapidly goes to zero
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for x < 1, the effect of photophoresis on free mol-
ecular limit particles will be negligible in such furnaces
when compared to other transport mechanisms, e.g.
thermophoresis. Consequently, «,D is more usefully
defined using the slip-flow expression for ¥,. The
appropriate non-dimensional form of the photo-
phoretic diffusivity is the ratio between this quantity
and the thermal diffusivity of the gas, which can be
considered a Lewis number for photophoresis. Using
equation (32), the photophoretic Lewis number Le, is

VopsCsTo _ e, d,
dr 3 ks

o 14lja(C+Cyem )
(1+3cnlja)(1 + 2cdja+ 2k k)

Presented in Fig. 7 are curves for Le, for char and
fly ash particles, in which T, and &, were taken as 900
Kand 0.2 Wm~' K~!, respectively, and air was taken
as the host gas. For size parameters greater than
around 5, the magnitude of Le, is of the order of 0.01.
Photophoretic velocities calculated for typical PC fur-
nace conditions [23] will generally be of the order of
1-5ems™’,

It is known that thermophoresis plays a major role
in the deposition of submicrometer to slightly super-
micrometer combustion particulates [1, 14]. For larger
particle radii, inertial impaction becomes dominant.
It is therefore of interest to examine the ratio
Le,/Ler = (V,/qr)/(V1/q.), where Vi is the ther-
mophoretic velocity and ¢, the local conductive (Four-
ier) heat flux. Using the slip-flow expression for V5
developed by Brock [17, 18], this ratio is

£e_D _ J kg
Ler ~ 3k(ky/k,+cdla)y

An interesting physical interpretation of J, is provided
by the above result, in that J, can be seen as three
times the continuum-limit ratio of the photophoretic
and thermophoretic velocities for equal radiative and
conductive heat flux.

Curves of Le,/Ler are presented in Fig. 8 as a func-
tion of particle radius for an assumed radiation tem-
perature Ty = 1800 K. For a 2 ym radius, this ratio is
around —0.008 for fly ash and 0.10 for char particles.

Le, =

p

(67)

(68)
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Considering that radiative heat fluxes in PC furnaces
can be of the order of 20 times greater than conductive
fluxes, the clear implication of Fig. 8 is that, for
slightly supermicrometer particles, photophoresis can
be a significant mode of particulate transport and
deposition. The current efforts are aimed at providing
a more detailed analysis of the role of photophoresis
in combustion environments.
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APPENDIX. NUMERICAL EVALUATION OF J,

Computation of J, via equation (62) was accomplished
through a slight modification of the BHMIE code given in

ref. [20]. BHMIE is an efficient FORTRAN program for
calculation of extinction and scattering properties of a homo-
geneous sphere.

In order to utilize BHMIE for the present purpose, equa-
tion (62) is reformulated using the logarithmic derivative
function D, = y (mx)/¥,(mx). This can be accomplished by
dividing equation (62) through by [¥,(mx)|?, which yields
the following terms:

o R _ImemC)
"7 WYa(mo))* T Im(m?)

GNY)

S = [~ T {"('"”""C"'z)
_ <m+2(n+ 1 Refn’”z)) R,,+(2n+l)m*|C,,|2R,,+l}
(A2)
where
¢, g donimx) _ntl_ (A3)

V.(mx)  mx
The internal wave coefficients ¢, and d, are related to the
BHMIE-calculated scattered wave coefficients a, and b, by
c-n = ‘I’n(mx)cn = m[l’/n(x) _én(x)bn] (A4)

Jn = lpn('n-x)dn = '/In(x) _én(x)an‘ (AS)

Substituting equations (A1)-(AS5) into equation (62) yields
_ —bnk = (n(n+2) (& EXR,

=X ( m ( C,

n=1

n(n+2) (¢,..¢*  dd%, n+1 , _
_< n+1 ( C, + Cx >+n(n+1)3,,c,’,")S,>.

(A6)

The advantage of using the function D,(mx) as opposed
to y,(mx) is that the former is much easier to calculate for
arbitrary orders of n [20]. Calculations of J, using equation
(AS5) were found to agree with the results of equation (62)
in which y/,,(mx) was evaluated explicitly from a series expan-
sion.

Jy

+ 30K, c)

PHOTOPHORESE DES PARTICULES D’AEROSOL DANS LES REGIMES
MOLECULAIRES LIBRES ET DE GLISSEMENT

Résumé—On présente une analyse de la force photophorétique et des particules d’aérosol dans le régime
moléculaire libre et celui du glissement. Avec les hypothéses d’un rayonnement incident non polarisé,
I'absorption du rayonnement dans la particule est formulée a partir de la théorie de Lorentz/Mie. Pour les
régimes moléculaires libres et ceux de glissement, la dépendance fonctionnelle de la vitesse photophorétique
vis-d-vis du paramétre de dimension et de I'indice complexe de réfraction est donné par le facteur J,
d’assymetrie photophorétique. Une expression en série infinie de J; est obtenue pour calculer rapidement
le comportement photophorétique. Des résultats numériques montrent que la photophorése peut étre un
mécanisme de transport significatif pour les particules microscopiques dans les environnements en com-
bustion avec des transferts radiatifs intenses.

PHOTOPHORESE VON AEROSOL-TEILCHEN IM BEREICH GROSSER UND KLEINER
FREIER WEGLANGEN

Zusammenfassung—Es wird cine Untersuchung der photophoretischen Kraft und Geschwindigkeit an
Aerosol-Teilchen im Bereich groBer und kleiner (“slip-flow™) freier Wegldngen vorgestellt. Unter der
Annahme, daB unpolarisierte Strahlung einféllt, wurde mittels der Theorie von Lorenz/Mie die Absorption
von Strahlung im Partikel beschrieben. Fiir beide Bereiche (groBe und kleine freie Wegldnge) gibt der
photophoretische Asymmetriefaktor J, die Abhéingigkeit der photophoretischen Geschwindigkeit vom
Strahlungsparameter und vom komplexen Brechungsindex an. J, wird in eine genaue unendliche Reihe
entwickelt, die eine schnelle Berechnung des photophoretischen Verhaltens erlaubt. Numerische Ergebnisse
zeigen, daB die Photophorese ein bedeutender Transportmechanismus fiir Partikel der GréBenordnung
“mikro-meter” in hochbelasteten Strahlungsbrennkammern sein kann.
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POTOPOPE3 ADPO30JIbHbIX YACTHUL] NP CBOBOJHOMOJIEKYJIAPHOM PEXHUME
U PEXXUME TEYEHHUA CO CKOJILXXEHUEM

AmoTamn—B  npeanonoxeHHH HENOIAPH3OBAHHOCTH MNAJAIOLIETO H3JIyYEHHS Ha OCHOBE TEODHH
Jlopenua/Muy onpeleneHo NOrioweHHe ulnydenns vacTiued. [ns oboux pexumMoB cBobomHOMOIIE-
KYJALWHOTO TEYEHUs M TEYEHHS CO CKOJIbXKEHHEM NpH MOMOLUH aCHMMETPHYHOro ko3dpduunenTa doro-
¢dopesa J, Haitnena PyHKUMOHAJIBHAS 3aBHCHMOCTB CKOPOCTH doTodopesa oT napaMerTpa H3JTyHEHHS H
KOMILIEKCHOTO Ko3dpHumenTa npesioMienna. [TonyyeHo TouHoe BeipaxeHue nns J, B BuAe GeckoHed-
HOro pana, nossonsowee ObicTPo onpeaenaTs xapakiep dporodopesa. YucneHHsle pe3ybTaThl NoKa-
3b1BatoT, 4TO (orodopes MOXET CNyKHTb BaXHBIM MEXAHH3IMOM MEPEHOCA HACTHU MHKPOHHOIO
pa3Mepa B CHIILHO H3J1y4alOLHX Cpeaax MPH rOPeHHH.



